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CROSS~-SPECTRAL PROPERTIES OF SOME COMMON WAVEFORMS
IN THE PRESENCE OF UNCORRELATED NOISE

INTRODUCTION

An extensive amount of data analysis had Bcsn performed in 1974 to
determine towed array self-noise mechanisms.1+423 Reduction of the data,

with particular emphasis placed on determining the magnitude coherence and
phase, yilelded the cross-spectral properties. Since magnitude coherence can
be a measure of signal-to-noise ratio® and in conjunction with the phase is a
measure of wvave speed, it was possible to determine some of the dominant self-
noise mechanisms. Interpretation of the data, however, is not always clear
cut. In the presence of uncorrelated background noise, various mechanisms can
combine in many different ways to produce complicated results. To achieve a
better understanding of the self-noise data, it was found useful to investi-
gate the cross-spectral properties of some common waveforms in the presence of
uncorrelated noise. It is the purpose of this report to present the results of
this investigation, with the hope that it will prove useful to others analyzing
these types of data.

THEORETICAL BACKGROUND
This section provides the theoretical background for determining

magnitude coherence and phase. For a single traveling wave in the presence of
uncorrelated noise, Carter4 showed that

- X(F)
"12“)‘ XE) + N (D) ° )

based on the model in figure 1, where JY (f)' is the magnitude coherence
between observation points 1 and 2. Un oyelated noise sources ny(t) and n2(t)
have the respective autospectra Nj;(f) and N,(f), where Nj(f) = Ny f) = N(f).
X(f) is the autospectrum of x(t), which is iOO percent coherent, since it is
the same at both observation points. (A computer run experiment using actual
at-s? data verified equation (1) and is further discussed in a NUSC memoran-
dum. “)

ni(n

|

= SENSOR 1
x(f) i
T SENSOR 2
TIME
DELAY nz(f)

Figure 1. Model for Single Traveling Wave
Plus Uncorrelated Noise

For two independent traveling waves in the presence of uncorrelated noise,
Gardner3 has shown that



TR 4947

)
r,(6) [xu(f) xzz(f)] 1 10, (0) +1(6) [Yn(f) Yzz(f)] o 10,(0)
i
*[xu(f) + Yn(f)] [xzz(f) + Yzz(f)“ @)

where xll(f)' x2 (f), Y1 (£), and Y2 (f) are the autospectra for the two inde-
pendent signals %x(t) an& y(t)) at o§servation points 1 and 2. Here uncorre-
lated noise is included as part of the signal. The cross-spectral densities
are Ty (£)[Xy1(£) Xpp(£) 1% e18X(E) and T (£)[¥);(F) Ypp(£) ]t e1BV(D)

(1.e., X4 (%} and le(f), respectively) and the phases are @,(f) and ﬂy(f).
Equation (2) can be written as

Yn(f) = v

x(£) %5 4 y(erel?y D)

Y120 = =@ Y0 + N ’ (3)

as shown by Harkowitz6, for the model in figure 2.
nx](')

i

ny1(t)
SENSOR
I - 1
x(t) y (1) =
[ 3
TIME )
DELAY nyz(f)
SENSOR
Ty o 2
TIME [
DELAY n2(t)

Figure 2. Model for Two Traveling Waves Plus Uncorrelated Noise

In the figure ny,(t), 2(t), nyl(t), and nyz(t) are uncorrelated noise
sourcee with autospectra Nx:?f) = Nyp(f) = Ny(f) and Nyl(f) - Nyz(f) - Ny(f).
The signals x(t) and y(t) are each 100 percent coherent in the model and have
the respective autospectra X(f) and Y(f). Also, xll(f) = X92(f) =X(f) + Ng(f),
Y11(£) = Yoo(f) = Y(f) + Ny(f), and Ny(f) + Ny(f) = N(f). We note that (fy =
wd/cx) and @y = (wd/cy), wzere d 18 the spatial separation between sensors 1
and 2 and cg, cy are the respective x and y velocities.

A derivation of equation (3) is given in the appendix. The important
assumptions made there are that (1) waves are nondispersive; (2) no attenua-~
tion between observation points 1 and 2; (3) x(t) and y(t) signals in equation
(3) are independent and, therefore, uncorrelated with respect to each other;
and (4) the estimate of the initial phases associated with each wave are
uniformly distributed from -m to +m.
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The magnitude coherence and phase obtained from equation (3) are

2 2 [ - g
{x(f) + Y(£)2 + 2X(£)Y(£) cos Lﬂx(f) oy(f)]} @)
X(f) + Y(f) + N(F) T

|112(f)| .

and

X(f) sin ox(f) + Y(f) sin Dy(f) z
. (5)

g = tan~! ;
X(f) cos Ox(f) + Y(f) cos ¢&(f)

The significance of the third assumption, regarding the statistical inde-
pendence of x(t) and y(t), can readily be seen in the special case of standing
waves. Consider x(t) and y(t) to be of unity magnitude and traveling in oppo-
site directions at frequency w, = 2nf, to form the standing wave S; = cos
k xlei“’ot at observation point 1 and Sy = cos koxzei“’ot at observation point 2.
One can then form the cross correlation to obtain

T/2

1 -12nf t 412wf (t+r)
Rlz('r) = '—ff cos koxlcos koxze o e o de

i2nfor_

= x e
cos ko cos koxz

1

The cross-spectral density becomes
o0

612 (£f) -_/::os koxl cos koxze

12ﬂfore12nftdt

= cos k x, cos k x, 2n§ (Zﬂf-ZNf )
o o2 ()

1
= cos koxl cos kox26 (f—fo) 5

Normalizing via Gll(f) and Gzz(f) yields

cos(woxllc) cos (molec) 6

Y12(f) |cos(m°x1/c)||cos(m°x2/c)| 1 (6)
0) 1in phase

0= (7)

n! out of phase

where ¢ is the wave speed (w /k ). (Uncorrelated noise sources are ignored tem-
porarily, since, for the purpose of demonstrating the significance of the third
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assumption, they represent an unnecessary complication.) These results (equa-
tions (6) and (7)) differ substantially from the previous results (equations (4)
and (5)). For a standing wave, equations (4) and (5) show, respectively,
|¥y,(£)]| to be periodic in f and @ to be spatially homogeneous, whereas equa-
tions (6) and (7) show, respectively, |le(f)| = 1 and § to be nonhomogeneous,
depending upon actual values of x, and X5, Tue difference lies in the fact that
in equations (6) and (7) the x ané y traveling wave components of the standing
wave are not statistically independent, but in equations (4) and (5) they are.
This difference is shown mathematically in the appendix, where the estimate of
the cross-spectral properties of the combined signals are obtained via ensemble
averaging. In each computation of the cross-spectral density, an initial phase
is associated with each traveling wave. When the two waves are statistically
independent, this initial phase is taken to be random, with a uniform distribu-
tion from -7 to n. When the ensemble average is formed, various cross-product
terms drop out because of the random phase relationship and, thereby, equations
(4) and (5) are obtained. In equations (6) and (7), the initial phase is assumed
to be zero, resulting in a determirisiic phase relationship, namely zero; conse-
quently the results are different.

RESULTS

GENERAL

This section is essentially a graphic representation of equations (4) and
(5) for variations of the pertinent parameters. These parameters are relative
wave speed determined by @y and Gy, relative magnitude determined by X(f) and
Y(f), and relative uncorrelated noise determined by N(f). For simplicity, the
frequency dependence of X(f), Y(f), and N(f) is neglected; i.e., the autospectra
of x(t), y(t), and n(t) are constant with respect to frequency, and equations
(4) and (5) become, respectively,

[Xz + Y2 + 2XY cos(ﬂx - 02)]li
|Y12(f) = X+Y+N —

(8)

and

(X sin ox + Y sin Dy)
(X cos ﬂx + Y cos oy) ’

9

@ = tan_

where X(f), Y(f), and N(f) are now simply written X, Y, and N.

Results are presented as a function of Py for various values of By/Py.
In actual practice, |112 and @ are obtained as functions of frequency. The
conversion is readily made since

Ox = 2ﬂfd/cx and Dy - and/cy . (10,11)

where d is the spatial separation between sensors 1 and 2, and cy and cy are the
respective wave velocities for x(t) and y(t).

In general, the coherence function will refleﬁt a periodicity with respect

to frequency because of the term [ZXY cos 2nf(~g—x- 'C'y)]‘ In fact, a single period
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with respect to frequency, denoted Af, 1s exactly cxcy/d(cy - cy):
Af = cxcy/d(cy - cx). (12)

This periodicity is very important in determining self-noise mechanisms, since

it is a reflection of wave speed, which 1s associated with the self-noise mech-
anisms (i.e., 5000 ft/sec is associated with acoustic waves). Of course, the
fact that we are dealing with two speeds can present complicated results. When
only one wave speed exists (i.e., cx = cy or Y = 0) Af + = and |v12l s a constant.

We note that the phase is independent of N. However, from a computational
point of view, uncorrelated noise is important in actual practice, since the
variance for the computed estimate of the phase depends on the coherence and,
therefore, on N.

SPECIFIC CASES

Discuseion here is limited to waveforms resulting from the combination of no
more than two traveling waves. Four waveforms are investigated:

1. Single Traveling Wave Plus Uncorrelated Noise

Equations (8) and (9), respectively, reduce to

v, 0] = 3 o and § - 0 (13,14)

(see figures 3 and 4). We note that |y;,| 1is constant and this indicates that
only one wave spesd exists, hence only one self-noise mechanism. This wave speed
18 ¢ = 2nd/(#/£f), where (@/f) is the slope of the phase plot.

2. Waves With 0 = -@, Plus Uncorrelated Noise

Equations (8) and (9) reduce to

(x2 + Y2 + 2XY cos zax)l’
vy ()] = X+Y+N - 1s)
and
-1 (X - Y) tan 0x
P = tan [W—] . (16)

The magnitude coherence is periodic in @y, with a period of n radians corre-
sponding to Af = cy/2d. The speed of the traveling components of waves with
’y = -@, 1s, therefore, c = 2dAf.

2a. Equal Magnitude Traveling Wave Components (Classical Standing Wave)

Equations (15) and (16) become, respectively,

k 2X
(2+2c092ﬁ) "X+ N

Iylz(f)I XTI + q Icos Oxl a7
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1.0 -
i SIGNAL
7 - — I
! |712|=0.5 FOR NOSE !
—
g o
ol §
!
o
0 [ A A L A l 4 A 4 A J
0 Iz brx

4 x

Figure 3. |Y12| for Single Traveling Wave Plus Uncorrelated Noise

Figure 4. @ for Single Traveling Wave
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and

0} 0¢< bx < 1'/2, m < Dx < 3"/2 (i.e., tan ‘x is positive)

g = . (18)

3
L] "/2 < 'x <m, 4

/2 ¢ Ox < 2rm (i.e., tan ’x is negative)
The essential characteristics of the classical standing wave,
shown in figures 5-7, are as follows:

® Figure 5 shows the step function characteristic of the phase
where § contains jumps of 7 radians. This is superimposed over
the traveling wave component for reference.

® Figure 6 shows the periodic characteristic of the standing wave
for 2X/(2X + N) = 0.6. The nominal values chosen were X = Y = 3
and N = 4. We note that for equal magnitude components the
minima occur at |yj3| = O and the maxima at 2X/(2X + N). The
frequency period is Af = cyx/2d or, with respect to By, it is n.

o Figure 7 shows that as the noise (N) is reduced, the peak in-
creases to the new value of 2X/(2X + N), which, in this case,
is 0.8. The nominal values chosen were X = Y = 2 and N = 1,

2b. Unequal Magnitude Traveling Wave Components

For Y = 2X, as an example, equations (15) and (16) become, re-
spectively,
X(5 + 4 cos ZOx)li X

- - k
lv35¢)] 3X + N X+ N

1+8 cos2 Ox)

and

p= tan_l (1/3 tan Ox).

These - sults are shown in figures 8-10. As for all waves with @y = -f,, the
periodicity of |712| with respect to fy is =.

The minima are no longer zero, as previously observed for X = Y,
but depend on the noise (N). The effect cf N is to control the minimum points,
peak points, and peak-to-valley excursions. These values decrease as N increases.

Characteristics of the phase plot are seen in figure 11 to be
between the standing wave step function (X = Y) case and the straight line
single traveling wave case, which again is shown for reference in the figure.
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6 R 7%

i STAND ING WAVE
e STEP FUNCTION \ /‘;<
— TRAVELING WAVE
- é COMPONENT
o /
0 i 1 1 | i 1 1 1 ]
0 3 R4
x
Figure 5. @ for Classical Standing Wave
1.0 -

2X/(2X + N) = 0.6

Figure 6. IYIZI for Standing Wave (for 2X/(2X + N) = 0.6)

1.0~

|7z

2X/(2X + N) = 0.8

Figure 7. Iylzl for Standing Wave (for 2X/(2X + N) = 0.8)
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0 i " e A . i L L i |
0 ir &r
=5

Figure 8. Iylzl for Two Waves With ¢y = -@,; Case 1, Zero Noise

1.0~ X = 2, N=%(X+Y)

[12]

X =2Y, N= 3(X + Y)

e

Figure 10. |Y12| for Two Waves With @, = -@ ; Case 3, High Noise
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&% —
L STANDING WAVE
L X=2Y
e 3rp

TRAVELING WAVE
COMPOMNENT

Figure 11. @ for Two Waves With Oy - -Gx

We can now generalize. For waves with 0y = -¢x, the range of

|Y12| is
reren holsrrew as)
and if we assume by convention X > Y, then the mean value of Iylz| will be
X
lv)] mean = o457 X> Y, (20)

with an excursion of +Y/(X + Y + N), as shown in figure 12.

Therefore, as Y + X, for a given N, the minima approach zero, the
peak-to-valley excursion is maximized, and |712| mean is reduced. For X >> Y,
the results approach the single traveling wave case. This is seen in figure 13
for X = 2Y, X = 5Y, X = 11Y, and N = 2/3(X + Y). Thus, as (X/Y) increases,
|Y12| becomes more nearly constant.

The generalization pertaining to § is simply that as X/Y -+ 1
the characteristic step function, seen in figure 5, is observed, and as X >> Y
the results approach the single traveling wave case shown in figure 4. Figure
11 presents an "in between" case, where X = 2Y. Finally, figure 14 compares
X = 5Y with X = 2Y, where the former case is already approaching the straight
line condition.

3. Two Waves Traveling in Same Direction

From equation (8) we note that the magnitude coherence will have a
periodicity in f dependent upon (P, - ﬂy) and is indistinguishable from other
waveforms with similar characteristics.” For example, a wave .ith f§, = - @,
having traveling wave components Xg, and Y., and a phase velrcity o¥ Pyow 18
compared with the sum of two waves, Xiw and Yy, traveling in the same direction
with phases @x¢y, and @yy,. Their magnitude coherences are indistinguishable if

10
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a = 2Y 2

- 5Y | N=S(X+Y)
x - 11¥Y 3

-"|7|2| MEAN Y &

’a|

Relative Wave Magnitudes

Figure 13. |71?| for Two Waves With ﬂy = -P_; Effect of

Figure 14. @ for Two Waves With ﬂy = -f,; Effect of
Relative Wave Magnitudes

e — |
Y+ N

- -
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Xgy = Xews Yoy = Yoo and 20,5, = (Bypy - Byey). This situstion is discussed
further on p. 13.

3a. Equal Magnitude Components

For equal magnitude traveling waves, equation (9) becomes

g tan_l[sin ”x + sin Oy] B} 'x + oy .
cos ﬂx + coaga;_ 2 (21)

Thereby, § becomes a linear function of #, for given values of (ﬂy/ﬂx) and is
shown in figure 15.

én
L X = Y FOR VARIOUS @y/¢

Figure 15. 9 for Equal Magnitude Waves Traveling in
Same Direction; Effect of Oylbx

3b. Unequal Magnitude Components

In general, the two traveling waves will have unequal magnitudes.
In such a case, certain characteristics of § can be observed by rewriting equa-

tion (9) as

§ = =an” (22)

In the above equation, we assume X to be the dominant component.
(This 1s done arbitrarily for convenience, and Y and @y can easily be substituted
for X and §,, yielding the same results.) For (X/Y) >> 1, this term dominates
and § + P, regardless of the va.ue of (8,/By). For (By/0y) < 1 and X/Y = 0(1),
the trigonometric terms introduce periodic variations about the line § = @,. At
X/Y = 1, of course, equation (21) applies.

In actual computations, in order to get the results of equation (21),
it is critical that X/Y be within a fraction of a percent from 1. This is shown

12
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in figures 16 and 17. Clearly, for (@ /0 )=1, 0= ox. For (0 /¢ ) > 1 and

X/Y = 0(1), again periodic variations about the line § = @, are introduced How-
ever, computationally, if X/Y gets "too close" to 1, jumps of = or 27 may occur.
This is shown in figuces 18 and 19. Also, the periodicity of these variations is
[1/(1-8,/0.] 2n. Thus, in figures 16 and 17, the periodicity of the variation
about the fine = @, is (10/9)2n and 4rm, respectively. In figures 18 and 19,
the periodicity of the variation abovt the line @ = @, is -27 and -7, respec-
tively. The positive or negative sign determines whether the variation is initi-
ated above or below the line @ = @,.

4., Two Waves Traveling in Opposite Directions

The results for two waves traveling in opposite directions are almost

the same as in section 3. (p. 10), except for the sign change in 0 and sin

The main difference is in the periodicity of the coherence function and in
tKe periodicity of the variations about the line § = @,. As mentioned in sub-
section 3b., the periodicity of these variations is [1/(1 - Py/8,)] 2. There-
fore, for (By/@,) = -0.1 (see figure 20) and (By/By) = -2 (see figure 21), these
periodicities are (10/11)2n and 2n/3, respectively For comparison purposes one
should refer to figures 16 and 18. There the periodicities are (10/9)27 and -2m,
respectively, where (ﬂylﬂx) =+ 0.1 and + 2.

ADDITIONAL COMMENTS

Unfortunately, similar and, in some cases, identical phase plots arise from
completely different combinations of self-noise mechanisms. The same is true for
coherence plots. These ambiguities are usually resolved by looking at both the
phase and coherence. However, care must be exercised.

As a simple example, one notes that for equal magnitude traveling waves
equation (21) shows @ = (@, + ﬂ )}/2. Denoting cases 1 and 2 by their respec-
tive subscripts, we see that for Py + 0 y1 = =@y + 0y2 the phase plots are in-
distinguishable. In terms of wave speed, this becomes

aiifl g ANc e 5 A
€yl c?] €o CyZ

Since the spacing between sensors is known and is the same in both cases, any
combination of cy)}, ¢ 1 and Cy2s Cyp that satisfies the above yields the same
and, therefore, amhiguous result. ~Consider an investigator who observes a
straight line phase plot with a slope of 0.6°/Hz for a sensor spacing of 6 in.
He might interpret the result to be a single wave traveling at 300 ft/sec, where
c = 360 d/{@#/f). Call this case 1. However, the investigator might not have
noticed electronic noise that was combining with a wave equal in magnitude to
the electronic noise and traveling at 150 ft/sec. Call this case 2. Then,

Cxl ™ Cy1 = 300 ft/sec, while cx2 = 150 ft/sec and c 9 + ®. Although both cases
1 and 2"yield the same phase plot, they can be easily distinguished by studying
the coherence plots. Case 1 shows a constant magnitude coherence, whereas case
2 reflects a periodicity with respect to frequency.

In another example, a wave with @, = -@, is compared with the sum of two
waves traveling in the same direction.” The wave with @, = -¢x has traveling
wave components Xgy and Yg,, and phase @yg,. The two waves traveling in the
same direction have components X, and Y, with phases @y, and 0 ytw. It
was mentioned in section 3. (p. 10) that the magnitude coherences are identical
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6F p—

# /0= 0.1

[i] ir 4w
Px

Figure 16. § for Unequal Magnitude Waves Traveling in Same Direction;
Effect of X/Y With 8y/@, = 0.1
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0 in .1

X

Figure 17. @ for Unequal Magnitude Waves Traveling in Same Direction;
Effect of X/Y With #,/0, = 0.5
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Figure 18. @ for Unequal Magnitude Waves Traveling in Same Direction;
Effect of X/Y With @,/8y = 2
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Figure 19. # for Unequal Magnitude Waves Traveling in Same Direction;
Effect of X/Y With ﬂylﬂx =3
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*x

Figure 20. § for Unequal Magnitude Waves Traveling in Opposite
Directions; Effect of X/Y With Oylﬁx = -0.1
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.1
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L

Figure 21. § for Unequal Magnitude Waves Traveling in Opposite
Directions; Effect of X/Y With oy/”x = -2
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1f Xgy = Xeys Yguw = Yoy and 20, = (Bypy, = Byey). If cyxgy = 300 ft/sec,
Cxtw = 150 ft/sec, and cy,, = §880 ft/sec, the results are not identical but
80 close as to render them indistinguishable. The two cases, however, are
easily distinguished by noting the phase. A straight line drawn through the
periodic variations will determine the speed of the dominant wave (in this
case either 300 or 150 ft/sec).

The final example compares two waves, denoted X; and Yg, traveling in the
same direction with two waves, denoted X, and Y,, traveling in opposite direc-
tions. Following the convention adopted in subsection 3b. (p. 12), we assume X
to be the dominant component. Then, 1f X, = Xg, Y, = Y5 and 1f cyy = Cyg»
the only observable difference in both the phase and coherence plots would be
in the periodicity with respect to frequency as a result of the fact that Cyo ¢
cyg. The observed periodicity, as mentioned previously, is [1/(1-¢y/0x)]2u
w¥th respect to f,. Since, in actual practice, data are obtained as a function
of frequency (not f,, which Js what the investigator is seeking to determine),
this periodicity is Af -[(lld)(%; - %7 or, denoting (Dylox) = (cx/cy) = a,

Af = cx/d(l-a). (23)

In order for the periodicities to be the sane, Afg would have to equal Af,,
which would require that ag, = a,, since d is the same in both cascs, as 1s c,
(by cefinition). This is impossible because a, is always positive and a, always
negative. It is, however, possible to obtain Af, = -Af,. This would produce
an identical periodicity in the coherence plots for both cases. Also, the same
periodicity would be produced in the phase plots for both cases, but with a half-
period phase shift. This is all shown in figure 22,

It is hoped that the results obtained, along with the examples presented,
are of help to those analyzing these types of data. For convenience the results
are summarized in table 1.

In actual practice, the reduced data are usually more complicated owing to
(1) the presence of more than two self-noise mechanisms, (2) dispersive waves,
(3) damping, (4) the statistical dependence of waves as a result of reflections,
and (5) the dependenco of all pertinent parameters on frequency. If desirable,
the iavestigator can often minimize these complications by careful experiment
design.

The investigator should also look at the time domain data, in particular
the cross correlation, to shed light on or to confirm his analysis. Periodi-
cities occurring in the frequency domain might be seen more Eeadily via a
Cepstrum nnalysis7 or a Smoothed Coherence Transform (SCOT). »9

20
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/!
v ﬂ*w’d',.l = 0,5

#/  (WAVES TRAVELING IN
OPPOSITE DIRECTIONS)

Py/é, =2.5
(WAVES TRAVELING
IN SAME DIRECTION)

MOTE: PERIODICITY IS
L SAME FOR | 7| AND
é 4w /3.

dy/ ¢, = 0.2 AND 2,5
]?‘uf FORX=3, Y=1, N=0 (SAME RESULTS)

- L L H | i i & i 0

0 anr &

s

Figure 22. Resolving an Ambiguity
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Appendix

DERIVATION OF MAGNITUDE COHERENCE AND PHASE FOR
TWO TRAVELING WAVES IN THE PRESENCE OF UNCORRELATED NOISE

Two traveling waves plus random noise are measured at observation points
1 and 2.* At w = w, the observed -signals are, respectively,
x X

1 1
iw t 16 iw (- —) 1@ 1w (t- =) 10 (A-1)
Sl-nleoen1+Xe° Cx e *4+ve © ‘Ye ¥
and x, x,
1w°t ion2 1w°(t- c—) 1ex iwo(t- ) 18
S, = nye e + Xe X e + Ye Ye Y, (A-2)

vhere e,,'l, 0n2s Oyyand 0y are the initial phases z2ssociated with a particular
observation, and n; = nj(w), ny = nz(m), X = X(w), and Y = Y(w) are understood.
Also note X 18 a traveling wave as distinguished from x the spatial coordinate.

The autocorrelation at point 1 is

x
1 T/2 2 :I.wo'r /2 1w°1' -imo(c—l-) i(Ox-enl)
- — X
Ru('r) - /nl e dt + ntXe e e dt
>T/2 -T/2
lim T+ =
/2 {fw v -1w xl/cy i(e -0 1) T/2 2 iwo't
+fn1Ye°e ° e YV ™ar+ er dt
-T/2 -T/2 .
X x
1/2 iv 1 fw xl/c 1(6 1-6 ) /2 iwo'r :I.mo 1.1 i(6 -ex) dt
+/m1e°e° e ™ % v+ XYe " e x SyJe 7
-T/2 -T/2
T/2 T/2 1 X
iw 1 {w x,/c. 1(6 .=-6 ) iw 1 iw(——-— i(8 -6 )
+ Yn1e°e°1ye ol 'y e + fYXeoi.ocy Cxfe * Y ac
-T/2 -T/2
T/2 2 1mor
+ /Y e de] . (A-3)
-i/2

*The approach taken in this appendix was suggested by Dr. A. H. Nuttall, of NUSC.
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The corresponding autospectrum is

Gy, (W) = (le + X2+ Y9 218 (wm )

dw x,/c. 1(6 -6 ) fw x./c. 1(8 -0 )

+o.X [; o'l x . X nl +e ol "x e nl x 2ﬂ6(w-w°)
-iw x. /c 1(6 -9 ) iw x,/c_ 1(6 -8 )

+nY [e o1y e it o1y e nl 7y nd(w-wo)

X X X X
1o (L. 1) 1¢e -0)  dw L _ 1) 1(e -0 5
+x¥ le °\% Cy/e y +e ° €y Cxje x 2n8 (w=w ). (A-4)

Taking On 02’ 6_,and 6  as uniformly distributed random variables and
ensemble }verag{ng, we ge
G, () = (n.2 + X2 + Y?) 216 (w-v_) (A-5)
11 1 o’*

All cross terms involving differences between initial phase angles go to
zero. This can be seen as follows:

T %

1(9-0)_‘/-‘/-e

-n -

1(0b
2 P(0,)P(6,)d0,dO (A-6)

where P(eb,ea) = P(eb)P(ea) for statistical independence.

Taking P(6,) = ;—ﬂ‘ -7 <6, <mand P(O,) = —t <8 <
T <

T < 0 < =7 Ob -7
we get
n T
ei(eb-ea) i ei(e"-e )de do_ =0
4 b * (A-7)
m n

Therefore, P(0 ) or P(Ob) must be uniformly distributed to have the cross terms
drop out.

Similarly one obtains

&zz(w) = (n22 + X2 + Y2)2n6(w-w°). (A-8)
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Writing the cross correlation and ensemble averaging yields the cross
spectrum Gyo(w):

X X ®, - X
- 2 1“'o(%"’z') 2 v (‘l——z)]
Glz(w) = |X"e x + Y% ° cy 21r6(u-m°),

(A-9)
and the coherence is simply _ -
1 ("1 "2) ("1 "2)
o | L—2 I S
2. 6 cy 2 1w° cy
N, = Xé + Ye .
(A-10)

[(“12 +x5 4 Yz) (nz2 + x4+ Yz)]x,
This is identical to equation (3), where

2 2 2 2 £)

X () = X(f), Y (w) = Y(f), and n, (w)" = n, )" = N(f).

Also, (xl - xz) = d.

When Ox and 6y have deterministic relationships, different results are
effected. Consider, for example, when 0y = ey = 0, the observed signals are

*1 X
iwot iwo(t - c——) iwo(t - c—-)
Sl =ne + Xe X + Ye y (A-11)
and
x x
fwe e (t--YH 1 (t--D
S2 = nye © $% ° cx +Ye ° cy . (A-12)

Note, only X and Y are not independent; however, n; and nj; are indepen-
dent relative to each other and to X and Y. Since, as observed previously,
all cross terms involving n; and ny will drop out after ensemble averaging,
there is no need to demonstrate this further by incorporating the intital
phase angles. Also, n; = nj(w), ny = “2(“’)’ X = X(w), and Y = Y(uw) is under-
stood.

The autocorrelation at point 1 is

%
1 /2 1w°r /2 2 1mor /2 2 iwor
Ru('r) ES fnlnle dt + fx e dt + Ye dt
-T/2 -T/2 -T/2
1lim T »+ o x x

/2 :lwo'r iwo ﬁ_ _ ﬁ) /2 1mo1' 1m°(c—1 - c—l-)
+ fXYe e \cx <, dt + /YXe e y x/ dt (A-13)

-T/2 ~-T/2
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and . X X
. 2 2, 2 “de. "o
Gu(w) =n, 278 (w - wo) + (X +Y)206(w - mo) + XYJe x y

wlia h 5
w2 -2
+ e €y %x/J Jons(w - mo) (A-14)

Similarly,

-

i
2 2,2 e "oy
Gzz(w) =n, 2n8(w - wo) + (X° + Y)216(w - wo) + XY|e x

+ e cy cy 2n6(w - wo) g

(A-15)
The cross specirum is readily obtained:
- x X, - X x x
" 2 1wo(x——1c 2) 2 iw[((-——-lc 2) imo z'l - c_2
Glz(m)- X"e x + Ye y + XY |[e X y
*2 (A-16)

b
iw Sl Epes ’
+ e _0 cy Cx | Znd(w - wo).

Also, one may write

x
. > -t ;l “tu_ _1)?
Gll(m) =0 218 (w - mo) + | Xe X + Ye Cyl2m8(w - mo), (A-17)
X x
o 2 -1(»0 Eg- -{w c_2 e
= = X — =
Gzz(w) n, 218 (w wo) + |Xe + Ye y 216 (w wo), (A-18)

x b x X
o o — +Hw — -lw — -:I.mo c_
Gu(m) ={xe °“x+ve ° cy Xe ©° %x+ Ye y] 2n8(w - mo) (A-19)
and, ignoring uncorrelated noise sources, as was done previously in equation (6),
+iw x, /¢
(Xe O + Ye

-1u x./c -iw x. /¢
Xe 1 X4y o1y

+:lmx/c)( -iw x,/c -iw x./c
ol 7y Xe 02 X 4 ve 072 y)
-iw x,/c -iw x,/c
Xe 02 X 4 ve 072"y

C..(w) =
12 2 2 (A-20)
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Finally, one notes that for a standing wave, cy = -cy = c and equation
(A-20) becomes

+iw x. /e -lw x,/c ( -iw x,/c +1lw x /?)
6 () <K 01" L ye 91 Xe °2/ + Ye °2,,; -
12 T 1w x,/c Ho x /c|2 ~iw x,/¢c +iow X, c'Z -
Xe o'l +Ye © 1 X 02 + Ye o
for X =Y,

v, | - cos wolxy/e) cos wy(xy/c)

cos wolec

]cos woxllc (A-22)

which is identical to equation (6).
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